Ноутбук и компьютер - Информационный портал

Измерение осциллографом тока и напряжения. Подключение осциллографа. Измерение силы тока с помощью осциллографа

Любая электротехническая лаборатория должна быть оборудована измерительной аппаратурой для определения источников сигналов, уровня напряжения, силы тока и так далее. Это позволяет осуществлять не только необходимые исследования, но и проектирование или конструирование различных приборов и устройств. На промышленном предприятии, особенно там, где присутствуют токи высокой частоты, без осциллографа (основного прибора для измерения электричества) практически невозможно обойтись.

Применение осциллографа

Данный аппарат позволяет визуализировать напряжение на специальном экране. Он выдает осциллограмму, которая представляет собой график изменения параметра электрического тока на протяжении некоторого периода. Основной ценностью осциллографа является возможность одновременного измерения напряжения, частоты, силы тока и угла сдвига фаз. Все результаты сразу обрабатываются и выводятся на экран в виде графика, который демонстрирует форму электрического сигнала. В результате наблюдатель может увидеть процессы, которые происходят в электрической цепи, определить источник сбоя, своевременно выключить прибор, чтобы предотвратить повреждение или катастрофу.

Как правило, постоянное напряжение представляет собой идеальную синусоиду. Однако на практике это не всегда так – напряжение в сети может колебаться, что и будет отражено на экране описываемого прибора. В такой ситуации точно измерить данный параметр с помощью стандартного вольтметра почти невозможно (будут существенные погрешности: измерительная аппаратура со стрелками будет выдавать одни значения, цифровые приборы – другие, а устройства для измерения напряжения постоянного тока – третьи). Единственный способ максимально точно определить напряжение в такой сети – использовать осциллограф.

Особенности применения цифрового аппарата

Данные измерительные устройства позволяют не только отслеживать форму сигнала в режиме реального времени, но и сохранять полученную информацию, которую затем можно будет обрабатывать на компьютерах при исследовании и моделировании различных процессов. Осциллограмма, которую выводит на экран описываемый прибор, предоставляет возможность наблюдать следующие особенности измеряемого сигнала:

  • Параметры электрического импульса;
  • Значения входящего сигнала (отрицательные или положительные);
  • Скорость изменения значений импульса от нуля до максимального значения;
  • Соотношение продолжительности импульса и паузы.

Чаще всего осциллографы используются для изучения сигналов, носящих периодический характер.

Принцип функционирования прибора

Ключевым элементом устройства является электронно-лучевая трубка (ЭЛТ). Из нее откачивается воздух так, чтобы внутри образовался вакуум, в котором находится катод (положительно заряженное вещество). При воздействии на него электрического тока он начинает излучать отрицательно заряженные частицы, фокусирующиеся затем с помощью специальной системы и направляемые на внутреннюю поверхность экрана. Эта поверхность покрыта специальным веществом – люминофором, на котором при попадании пучка электронов возникает свечение. В результате, если смотреть на прибор снаружи, можно наблюдать на экране движение светящейся точки.

Фокусировка и направление луча в ЭЛТ осуществляется с помощью двух пар пластин, которые управляют движением электронов в двух плоскостях. В горизонтальной – пучок электронов отклоняется пропорционально изменению времени, а в вертикальной – пропорционально измеряемому напряжению.

Развертка

При наблюдении за характером сигнала с использованием осциллографа напряжение следует подавать на вертикально расположенные пластины. Полученный график изменения параметра, как правило, имеет вид пилы: сначала происходит нарастание разности потенциалов в линейной зависимости, а затем следует резкий спад. Кроме того, наблюдая за движением луча на экране, можно увидеть его отклонение влево или вправо. Это свидетельствует о знаке напряжения: при его отрицательной величине происходит движение влево, а при положительной – вправо. Чаще всего движение луча происходит слева направо с постоянной скоростью.

Такое перемещение точки на экране прибора и называется разверткой. Горизонтальная линия, проводимая лучом, носит название линии нуля. Относительно нее производятся измерения времени. Под частотой развертки понимается периодичность, с которой повторяются пилообразные импульсы.

Порядок подключения осциллографа

Поскольку напряжение – разность потенциалов, то измерять его следует в двух точках. С этой целью осциллограф оборудован двумя клеммами, с помощью которых производится подача напряжения на пластины. Первая клемма является входом и подключается к источнику сигнала, что ведет к отклонению луча по вертикали. Вторая – называется общим проводом и заземлена (замкнута на корпус самого прибора).

Чтобы корректно подключить прибор, необходимо заранее знать, какой из проводов является фазой (по какому проводу течет электрический ток). В зарубежных устройствах для этого имеются специальные щупы, которые позволяют определить наличие напряжения на входе и, к какому источнику какую клемму подключать. При этом общий провод заканчивается зажимом типа «крокодил», что позволяет легко его закрепить на металлическом корпусе измерительного прибора. Клемма, которая обеспечивает контакт с фазой, имеет форму иглы, что позволяет легко измерять электрический сигнал в любом месте: розетке, проводе, печатной плате или даже на ножке микропроцессорного чипа.

После того, как клеммы установлены, можно переходить непосредственно к измерениям. Практически в любой электрической цепи существует единый провод, и для проверки параметров рекомендуется измерять характеристики сигнала на нем. Но такая ситуация может быть не всегда. Тогда следует выбрать точки, где требуется произвести замеры, и осуществить их (чаще всего в качестве таких точек выбирают места наиболее вероятной неисправности).

Обратите внимание! Основной задачей осциллографа является наблюдение за напряжением в динамике. Но, подключив сопротивление, можно исследовать и форму электрического сигнала тока. Величина сопротивления при этом должна быть существенно ниже общего сопротивления исследуемой цепи. Только при соблюдении данного условия измерения будут корректными, поскольку прибор не окажет влияния на функционирование цепи.

Особенности подключения отечественных устройств

Стандарты организации электрических цепей в РФ отличаются от зарубежных, поэтому и измерительную аппаратуру приходится подключать по-другому. В частности, применяются штекеры с диаметром щупа в 4 миллиметра. Поскольку они одинаковые, то, чтобы правильно подключить прибор, необходимо обращать внимание на следующие признаки:

  • Вывод, который присоединяется к источнику тока, как правило, обладает большей длиной;
  • Провод для заземления (крепления к корпусу) обычно черный или коричневый;
  • На штекере для заземления часто присутствует соответствующая надпись или указание, что он должен быть подсоединен к общему проводу.

Важно! Однако такие обозначения встречаются не всегда. Приборы могут быть после ремонта, штекеры заменены, поэтому, чтобы определить, на каком проводе фаза, а на каком – ноль, рекомендуется воспользоваться проверенным способом. Для этого необходимо дотронуться рукой сначала до одного штекера, а потом – до другого. Если пользователь коснулся штекера на минусовом проводе, то на экране появится горизонтальная линия. При касании фазового провода на экране будет отображена синусоида с большим количеством шумов (помех). Данный способ является безошибочным, а помехи появляется из-за влияния других электроприборов, находящихся в помещении.

Возможности двухканального аппарата

Особенностью данного прибора является возможность одновременной выдачи на экран сигнала от двух различных источников. У такого типа измерительного аппарата имеется два канала, обозначенных соответствующим образом. При этом клеммы нулевого провода обоих каналов заведены на корпус, поэтому, измеряя импульсы таким прибором, следует не допускать их подключения к разным местам в одной электрической цепи, поскольку в таком случае может произойти короткое замыкание, и сведения о напряжении окажутся неверными.

Единственным недостатком двухканального осциллографа является невозможность наблюдать одновременно два различных напряжения. Однако такая проблема не является критической, поскольку в большинстве случаев нулевой провод соединен с корпусом и является общим для двух фаз, а, значит, измерение напряжения осуществляется с применением данного проводника.

Преимуществом такого прибора является наличие возможности контроля двух параметров электрической цепи: силы тока и напряжения. Для измерения тока в схему требуется обязательно включить дополнительное сопротивление с определенными параметрами (оно не должно превышать общего сопротивления цепи, чтобы не создавать погрешностей при измерении). Использование такого осциллографа является довольно сложным занятием, поэтому рекомендуется всегда иметь справочники и схемы корректного его подключения.

Дополнительная информация. Следует учитывать и особенность конструкции двухканального осциллографа. В нем имеется некоторая несимметричность: синхронизация первого канала обладает более высоким качеством и стабильностью по сравнению со вторым. Поэтому для получения корректной осциллограммы рекомендуется использовать первый канал для наблюдения за напряжением, а второй – за током.

Порядок измерения напряжения

Для мониторинга данной характеристики сигнала с помощью осциллографа следует ориентироваться на значения вертикальной шкалы экрана. Чтобы получить значения, необходимо соединить клеммы прибора между собой, а затем включить режим измерений. После этого требуется отрегулировать прибор так, чтобы линия развертки оказалась совмещенной с центральной горизонтальной чертой на экране.

Только после завершения описанных подготовительных действий можно переводить устройство в режим для осуществления измерений. Для этого входную клемму следует поместить на источник сигнала, который требуется исследовать.

Важно! Производить измерения с помощью портативного осциллографа несколько сложнее, поскольку у него существенно большее количество настроек и регулировок, поэтому применять его рекомендуется либо при наличии соответствующего опыта, либо, сверяя каждое действие с инструкцией.

После подачи сигнала на вход прибора на экране появится график. Для измерения высоты синусоиды (уровня напряжения) необходимо также произвести регулировку: установить пластины так, чтобы точка на экране находилась на вертикальной линии. Так производить измерение будет существенно проще, поскольку на нее нанесена шкала со значениями.

Порядок изменения частоты

Осциллограф позволяет измерять и периоды сигнала. Для вычисления частоты в последующем можно воспользоваться простой формулой, поскольку частота находится в обратно пропорциональной зависимости от периода сигнала (увеличение периода ведет к сокращению частоты и наоборот).

Измерять период проще всего в местах, где осциллограмма пересекает горизонтальную ось. Следовательно, для получения корректных значений рекомендуется перед началом исследования настроить линию развертки так же, как при мониторинге напряжения.

После этого необходимо установить начало движения точки на крайней левой линии на экране. Далее требуется только зафиксировать значение, при котором точка пересечет горизонтальную линию. Вычислив значение периода, можно с помощью специальной формулы определить частоту. Для увеличения точности измерений следует максимально растягивать график в горизонтальной плоскости. Оптимальной точностью считается погрешность на уровне менее одного процента, но такие параметры можно получить только на цифровых устройствах с линейной разверткой.

Определение угла сдвига фаз

Данное явление демонстрирует расположение относительно друг друга графиков двух электрических сигналов на протяжении определенного периода времени. Измерение величины сдвига осуществляется в частях периода (градусах), а не в единицах времени. Это объясняется особенностью графика, который по своей форме представляет синусоиду, а значит, различие в графиках зависит от разницы в величине углов.

Максимальную точность можно получить также при растяжении графика в длину. В связи с тем, что каждый сигнал отображается с одинаковой яркостью и цветом, рекомендуется установить для них разную амплитуду. Для этого следует подавать на первый канал максимально возможное напряжение, что позволит улучшить синхронизацию изображения на экране.

Таким образом, использование осциллографа требует определенных навыков и теоретических знаний, но измерения параметров электрического сигнала, которые позволяет сделать данный прибор, позволяют обнаружить различные неисправности, а также проектировать качественные новые изделия.

Видео

ЛАБОРАТОРНАЯ РАБОТА 10 КЛАСС.

Знакомство с интерфейсом цифрового осциллографа.

Измерение силы тока с помощью осциллографа

1. Вспомните, что перед изъятием устройства «флэш»-памяти из USB-порта, Вы всегда отключаете напряжение на этом порту, используя опцию «Безопасное извлечение».

Будьте внимательны с USB-портом компьютера, короткое замыкание его контактов может привести к выходу из строя не только порта, но и всего компьютера!!!

Источником постоянного тока в работах по электродинамике будет служить один из USB-портов компьютера. Подсоедините блок коммутации USB-порта с электрической цепью (в дальнейшем источник тока ) к одному из USB-портов. Ко второму USB-порту подсоедините кабелем датчик напряжения осциллографический (в дальнейшем осциллограф ).Подключите щупы осциллографа к выходным клеммам источникапостоянного тока.

Если возникают проблемы с настройкой осциллографа или иного датчика, возможно, вы запустили программу раньше установления драйвера датчика, опросите еще раз датчик

(кнопка ) или перезагрузите программу.

2. Запустите программу «Цифровая лаборатория». В открывшемся окне со списком работ выберите сценарий работы 3.1 «Знакомство с интерфейсом осциллографа». Окно со списком работ можно вызвать и нажав кнопку в верхнем меню программы.

3. Осциллограф – устройство позволяющее измерять напряжение постоянного и

меняющегося во времени электрического сигнала. Используя кнопку , откройте окно настроек параметров компьютера (рис.1)

Рис.1 Ознакомьтесь с содержанием вложенных списков параметров настройки в каждом из

окошек настройки параметров. Осциллограф может измерять одновременно напряжение на двух участках цепи по двум каналам. Установите «галочку» в окошке выбора «красного» канала (Канал №1). Режим работы «авто» и развертку «5 мс/дел», чувствительность Канала №1 «1 В/дел», положение нулевой линии «0», вид сигнала «Постоянный» * , установите «галочку» в окошках «Отображение сигнала» и

* Опция «Переменный» в окне «Вид сигнала» при настройке параметров регистрации осциллографического датчика позволяет отсечь постоянную или медленно меняющуюся (с характерным временем около 0,1 с) составляющую напряжения и показывать только быстро меняющийся сигнал (с характерным временем 0,05с и менее). В наборе работ «Цифровая лаборатория. Базовый уровень» такая опция нигде не используется.


«Отображение нулевой линии». Параметры в остальных окнах можно пока не менять. Зафиксируйте выбранные параметры (кнопка )


4. Запустите измерения в программе «Цифровая лаборатория (кнопка ) и после прописывания нулевой линии красной линией подключите выводы осциллографа в «красной» оплетке к клеммам источника тока. Обратите внимание, в какую сторону смещается сигнал при подключении кабеля с синим наконечником к клемме источника

«+», а с красным наконечником – к клемме «минус». Остановите измерения (кнопка )

и левой кнопкой мыши установите желтый вертикальный маркер на рабочем поле на первом делении по горизонтали. Обратите внимание на числовые значения напряжения

и времени в левом верхнем углу (или в нижней части окна) окна регистрации. Время

отсчитывается от зеленого вертикального маркера, стоящего на левой границе рабочего поля. Вы можете сместить зеленый маркер правой кнопкой мыши. Клик правой кнопкой за левой границей окна регистрации возвращает зеленый маркер на левый край поля.

5. Вернитесь в окно установки параметров осциллографа, измените чувствительность по напряжению Канала №1 и временную развертку. Включите регистрацию по Каналу №2, установив в окне вида сигнала (рис.1) – «Постоянный». Приняв параметры, проверьте, как изменились показания осциллографа на рабочем поле. Заменив щупы Канала №1 (красного) на щупы Канала №2, проверьте, как работает Канал №2, затем снимите сигнал с источника обоими каналами, присоединив клеммы каналов так, чтобы сигнал от них был разной полярности.

6. Соберите электрическую цепь, состоящую из последовательно соединенных резистора с сопротивлением 200 Ом, переменного сопротивления (его сопротивление меняется от 0 до 100 Ом), светодиода, ключа и источника тока. К выходным клеммам источника тока подключите клеммы Канала №1 осциллографа, а к концам резистора 200 Ом – клеммы Канала №2 (рис.2). Замкнув ключ и вращая ручку переменного сопротивления, убедитесь, что показания на клеммах источника тока не меняется, а напряжение на резисторе 200 Ом меняется синхронно с изменением яркости светодиода (светодиод будет гореть, только если соблюдена верная полярность подведенного напряжения). Остановите регистрацию при максимальной яркости светодиода и замерьте напряжение на резисторе в 200 Ом.

сопротивлением Rш=10 Ом (рис.3), оставив щупы осциллографа на резисторе 200 Ом. Замкните цепь, запустите регистрацию, и, остановив регистрацию, убедитесь, что напряжение на резисторе в 200 Ом и яркость светодиода не изменились. Резистор в 10 Ом с сопротивлением малым по сравнению с общим сопротивлением цепи будем называть шунтом . Шунт в данной цепи уменьшает силу тока примерно на 5%, то есть


не влияет и на напряжение на элементах в цепи и яркость светодиода. Включая его в участок цепи, через который нужно измерить силу тока, измеряя напряжение на нем, измеряют силу тока, поскольку для резистора выполняется закон Ома I=U/R.

8. Исключите из цепи (рис.3) светодиод. Переключите щупы Канала №1 осциллографа с

источника тока, на шунт. Откройте вкладку «Исходные данные» (кнопка ) и внесите в

таблицу значение сопротивления шунта = 10 Ом (рис.4).

Рис.4 Выберите полярность подключения осциллографического датчика таким образом, чтобы

по каждому из каналов регистрировался положительный сигнал. Запустите регистрацию и, получив сигнал с обоих каналов осциллографа, остановите регистрацию. Установив желтый маркер на экран. Перейдите на вкладку «Таблица окна «Обработка» и выберите ячейку в столбце «U, В» (рис. 5).

(синяя оплетка кабеля осциллографа и синий цвет сигнала на экране) осциллографа в выбранную ячейку Таблицы. Для заполнения столбца с напряжением на шунте выберите ячейку в столбце «Uш, В» (рис.5) и нажмите кнопку красного цвета - значение напряжения измеренного на Канале №1 (красная оплетка и красный цвет сигнала на экране) отправится в соответствующую ячейку Таблицы. Рассчитайте значение силу тока через шунт и внесите ее в ячейку в нижней части таблицы (рис.5). После внесения «Исходных данных» эта «серая» ячейка становится «желтой», при внесении правильного значения – «зеленой», при внесении ошибочного значения – «красной». При «зеленой» ячейке дальнейшие расчеты значения и заполнение соответствующих ячеек в Таблице осуществляется автоматически (рис.6).


9. Запустите регистрацию и, меняя положение ручки резистора с переменным напряжением, добейтесь смены напряжения на резисторе 200 Ом и силы тока (и соответственно напряжения на шунте) в цепи. Останавливая запись, зарегистрируйте несколько значений напряжений на резисторе и шунте. Без заполнения нескольких строк в Таблице построения Графика (см.п.10) не будет осуществляться.

ВНИМАНИЕ! Напоминаем, что увеличение числа строк в Таблице осуществляется кнопкой на клавиатуре при заполнении хотя бы одной ячейки в предыдущей строке.

10. Перейдите на вкладку «График U(Iш) зависимости напряжения на резисторе 200 Ом от силы тока через резистор (она равна силе тока через шунт) и проанализируйте полученный график. Выбрав в окошке подбора функций для описания экспериментального графика функцию Y=AX (подбор наилучшей прямой осуществляется по нажатию на кнопку рядом с окном выбора вида функции, рис.7), убедитесь, что закон Ома U=RI выполняется, а коэффициент пропорциональности А соответствует

значению сопротивлению резистора R 200 Ом.

11. Занесите в Отчет (кнопка ) один из экранов с сигналом осциллографа, содержание вкладок « Исходные данные» и «Таблица», полученный график U(I), а также фото последней электрической цепи, на которой проводились измерении, сделанное с помощью ВЕБ - камеры, и скриншот окна настроек осциллографа (сочетание клавиш Alt-PrtScr), при которых проводились измерения.

ВНИМАНИЕ! Копирование в Отчет содержимого любой вкладки окна «Обработка» и кадр видео с установкой, регистрируемый ВЕБ – камерой, осуществляется в место, указываемое не курсором клавиатуры, а КУРСОРОМ МЫШИ. Содержимое вкладки НЕ ВСТАВЛЯЕТСЯ В ОТЧЕТ, ЕСЛИ ВЫ НЕ ОТКРЫВАЛИ эту вкладку.

Осциллограф - прибор, показывающий форму напряжения во времени. Также он позволяет измерять ряд параметров сигнала, такие как напряжение, ток, частота, угол сдвига фаз. Но главная польза от осциллографа - возможность наблюдения формы сигнала. Во многих случаях именно форма сигнала позволяет определить, что именно происходит в цепи. На рис. 1 показан пример подобной ситуации.

Рис. 1. Осциллограмма сложного сигнала.

В этом случае напряжение содержит как постоянную, так и переменную составляющие, причем форма переменной составляющей далека от синусоидальной. На таком сигнале вольтметры дают большую ошибку: стрелочный вольтметр переменного тока показал напряжение 2,2 вольт, а цифровой - вообще 1,99 вольт. Вольтметр постоянного тока показал 4,8 вольт. Правильное действующее значение напряжения показал осциллограф - 5,58 вольт (цифровые осциллографы измеряют напряжение и позволяют сохранять результаты в компьютерном формате). Кроме того, осциллограмма позволяет увидеть некоторые свойства сигнала:

  • сигнал имеет импульсный характер;
  • сигнал не принимает отрицательных значений (измерено с открытым входом осциллографа);
  • сигнал очень быстро изменяется от нуля до значения 6,4 вольта и обратно до нуля (чувствительность канала вертикального отклонения 2 V/дел);
  • длительность импульсов более чем в три раза превышает длительность пауз.

В общем, лучше один раз увидеть, чем сто раз услышать.

В подавляющем большинстве случаев исследуются периодические сигналы, именно про них мы и будем говорить.

1. Принцип действия осциллографа

«Сердцем» прибора является электронно-лучевая трубка (ЭЛТ), рис.2.

Рис. 2. Устройство электронно-лучевой трубки с электростатическим управлением.

ЭЛТ является электронной лампой, и, как и все лампы, она «заполнена» вакуумом. Катод излучает электроны, а система фокусировки формирует из них тонкий луч. Этот электронный луч попадает на экран, покрытый люминофором, который под воздействием электронной бомбардировки светится, и в центре экрана возникает светящаяся точка. Две пары пластин ЭЛТ отклоняют электронный луч в двух взаимно перпендикулярных направлениях, которые можно рассматривать как координатные оси. Поэтому для наблюдения на экране ЭЛТ исследуемого напряжения необходимо, чтобы луч отклонялся по горизонтальной оси пропорционально времени, а по вертикальной оси - пропорционально исследуемому напряжению.

На пластины горизонтального отклонения луча (расположенные вертикально) подается напряжение развертки. Оно имеет пилообразную форму: постепенно линейно нарастает и быстро спадает (рис. 3). Отрицательное напряжение отклоняет луч влево, а положительное - вправо (если смотреть со стороны экрана). В результате луч движется по экрану слева направо с определенной постоянной скоростью, после чего очень быстро возвращается к левой границе экрана и повторяет свое движение. Расстояние, которое проходит луч вдоль горизонтальной оси, пропорционально времени. Этот процесс называется разверткой, а горизонтальная линия, которую луч прочерчивает по экрану, называется линией развертки (иногда при измерениях ее называют нулевой линией). Она играет роль оси времени t графика. Частота повторения пилообразных импульсов называется частотой развертки, но она для измерений не используется. Для измерений нужно знать скорость развертки, про которую будет сказано ниже.

Рис. 3. Форма напряжения развертки.

Если при этом на пластины вертикального отклонения (расположенные горизонтально) подать исследуемое напряжение, то луч начнет отклоняться и по вертикали: при положительном напряжении вверх, а при отрицательном - вниз. Движения по вертикали и по горизонтали происходят одновременно и в результате исследуемый сигнал «разворачивается» во времени. Получившееся изображение называется осциллограммой.

На самом деле кроме линейной существует еще круговая и спиральная развертки, а также фигуры Лиссажу, когда один из сигналов является разверткой для второго. Но это уже совсем другая история…

Важным моментом является соотношение частот развертки и сигнала. Если эти частоты в точности равны, то на экране отображается ровно один период исследуемого сигнала. Если частота сигнала вдвое больше частоты развертки, то мы увидим два периода, если втрое - то три. Если частота сигнала вдвое меньше частоты развертки, то мы увидим только половину периода сигнала. Частоту (скорость) развертки можно регулировать в широких пределах. Но изображение будет стабильным только в том случае, если частоты развертки и сигнала точь-в-точь совпадают. При малейшем несовпадении частот, каждое начало движения луча по экрану будет соответствовать новой точке функции входного сигнала, и ее график каждый раз будет рисоваться в новом положении. При небольшом несовпадении частот (доли герца) это будет выглядеть как график, «плывущий» влево или вправо. При несовпадении частот в несколько герц и более, осциллограмма становится нечитаемой (рис. 4).

Рис. 4. Осциллограмма при отсутствии синхронизации.

А ведь добиться абсолютно точного совпадения частот (особенно в десятки-сотни килогерц) практически невозможно. Поэтому разверткой в осциллографе управляет специальная схема синхронизации. Она задерживает начало движения луча по экрану так, чтобы луч начинал двигаться в тот момент, когда входное напряжение достигло определенного значения. В этом случае луч начинает движение (и рисование осциллограммы) каждый раз с одной и той же точки графика входного сигнала. В результате каждое следующее движение луча рисует картинку в одном и том же положении, даже если частоты сигнала и развертки заметно не совпадают. Изображение получается стабильным и устойчивым. Напряжение сигнала, при котором происходит синхронизация (уровень синхронизации), задается органами управления осциллографа. Визуально изменение этого напряжения вызывает смещение начала изображаемого графика относительно начала периода сигнала, рис. 5.

Рис. 5. Осциллограммы при разных уровнях синхронизации.

Для того чтобы можно было наблюдать несколько сигналов одновременно, выпускают многолучевые и многоканальные осциллографы. Обычно число каналов равно двум (иначе получается очень сложно и дорого). ЭЛТ двухлучевых осциллографов работает одновременно с двумя лучами на общем экране, которые позволяют наблюдать два сигнала абсолютно независимо. Но такие приборы сложны и дороги. Поэтому больше распространены двухканальные осциллографы. Их ЭЛТ самая обычная, но они имеют два отдельных входа и два независимых усилителя вертикального отклонения, которые обслуживают входные сигналы. Кроме того, они имеют встроенный высокоскоростной коммутатор, очень быстро переключающий ЭЛТ (пластины вертикального отклонения) от одного канала к другому. Изображения сигналов при этом не являются непрерывными линиями, а состоят из множества штрихов. Но на экране штрихи сливаются, и в результате получается два графика входных сигналов. Лишь при наблюдении высокочастотных сигналов и неудачной частоте развертки изображение может стать пунктирным.

2. Подключение осциллографа

Поскольку напряжение измеряется между двумя точками, то вход осциллографа имеет две клеммы. Причем они не равнозначны. Одна клемма, называемая «фаза», подключена ко входу усилителя вертикального отклонения луча. Вторая клемма - «земля» или «корпус». Она называется так потому, что электрически соединена с корпусом прибора (это общая точка всех его электронных схем). Осциллограф показывает напряжение фазы по отношению к земле .

Очень важно знать, какой из входных проводников является фазой. В импортных приборах обычно используются специализированные щупы, земля которых имеет зажим типа «крокодил» так как часто подключается к корпусу исследуемого устройства, а фаза оканчивается либо «иголкой», которой можно удобно и надежно «воткнуться» даже в контакт маленького размера, либо зажимом (рис. 6). В этом случае перепутать фазу и корпус в принципе невозможно.

Рис. 6. Щуп импортного осциллографа, слева «игла», справа зажим.

Осциллографы отечественного производства чаще всего комплектуются шнурами, имеющими стандартные для России 4-мм штекеры (к ним иногда применяется название «банан», пришедшее из аудиотехники), рис. 7. В этом случае оба штекера одинаковы, и для того, чтобы их различать используются дополнительные признаки. Этих признаков несколько, и они могут встречаться в любом сочетании:

Однако, к сожалению, эти правила выполняются не всегда. Особенно это относится к кабелям, прошедшим ремонт: туда могут поставить любой проводник, имеющийся в наличии и первый попавшийся штекер. Поэтому есть еще один способ определения фазы и корпуса, дающий стопроцентную гарантию.

Рис. 7. Штекер отечественного осциллографа.

Для определения какой из проводников является фазой, а какой корпусом, надо при никуда не подключенном осциллографе взяться рукой за контакт одного из входных проводников, при этом другой рукой ни до чего не дотрагиваться. Если этот проводник - корпус, то на экране будет только лишь горизонтальная линия развертки. Если этот проводник - фаза, то на экране возникнут довольно значительные помехи, представляющие собой сильно искаженную синусоиду частотой 50 Гц (рис. 8).

Рис. 8. Помехи на экране осциллографа при касании рукой фазы входного кабеля.

Эти помехи возникают из-за того, что существует емкость между телом человека и проводами сети, проложенной в помещении. И возникает ток, протекающий по такой цепи: фаза осветительной сети переменного тока 220 В 50 Гц - емкость между проводами сети и телом человека - рука человека - вход усилителя (фаза входного кабеля) - электронная схема усилителя - корпус осциллографа - емкость между корпусом и Землей - нейтральный провод сети (он всегда заземлен). Цепь замкнута, ток течет. Величина этого тока составляет 10^-8…10^-6 ампера, но вход осциллографа имеет очень высокое сопротивление (порядка 10^6 Ом), поэтому на нем возникает достаточно большое напряжение. Синусоида выглядит искаженной оттого, что емкостное сопротивление участка сеть - тело человека зависит от частоты: чем частота выше, тем сопротивление меньше. Поэтому высокочастотные составляющие (гармоники сети и проникшие в нее помехи) создают больший ток и большее напряжение на входе осциллографа.

Определив фазу и корпус входного кабеля, можно подключать осциллограф к исследуемой цепи. Если в ней нет четко выраженного общего провода, то корпус подключается к любой из точек, напряжение между которыми требуется исследовать. Если в цепи присутствует общий провод - точка, условно принимаемая за нулевой потенциал, соединенная с корпусом устройства или реально заземленная, то корпус осциллографа лучше подключать к этой точке. Невыполнение этого правила может привести к значительным погрешностям измерений (иногда настолько большим, что измерениям и вовсе нельзя доверять).

По своей сути осциллограф является вольтметром, показывающим график напряжения. Однако с его помощью можно наблюдать и форму тока. Для этого последовательно с исследуемой цепью включают резистор Rт (здесь индекс «т» означает токовый), рис. 9. Сопротивление резистора Rт выбирают намного меньшим, чем сопротивление цепи, тогда резистор не влияет на ее работу и его включение не приводит к изменениям режима работы цепи. На резисторе по закону Ома возникает напряжение:

Это напряжение и измеряется осциллографом. А зная величину Rт можно перевести напряжение, показываемое осциллографом в ток.

Рис. 9. Измерение тока осциллографом.

Двухканальный (и двухлучевой) осциллограф может показывать осциллограммы двух сигналов одновременно. Для этого у него имеется два входа (канала), обычно обозначаемых I и II. Следует помнить, что одна из входных клемм каждого канала соединена с корпусом осциллографа, следовательно, клеммы «корпус» обоих каналов соединены между собой. Поэтому эти клеммы должны подключаться к одной и той же точке цепи, иначе в цепи произойдет замыкание (рис. 10).

Рис. 10. Подключение двухканального осциллографа. «Земли» входов могут создать замыкание в цепи.

На рис. 10а точки цепи В и D оказались замкнутыми между собой через корпус осциллографа (замыкающий проводник показан пунктиром). В результате конфигурация цепи изменилась.

Возможность наблюдать не любые два напряжения, а только имеющие общую точку, является недостатком, но небольшим - в электронике один из полюсов источника питания всегда является общим проводом, и все напряжения измеряются относительно него.

Используя двухканальный осциллограф можно одновременно наблюдать и напряжение, и ток в цепи. И таким образом измерять сдвиг фаз между током и напряжением. Схема подключения осциллографа в этом случае показана на рис. 11.

Рис. 11. Подключение осциллографа для измерения сдвига фаз.

Канал I измеряет напряжение, а канал II измеряет ток. Такое включение наиболее оптимально, т.к. напряжение, падающее на резисторе Rт и подаваемое в канал II, в 30…100 раз меньше, чем в канале I, следовательно, оно больше подвержено помехам и синхронизация от низкого напряжения не такая хорошая. Кроме того, конструкция большинства осциллографов несколько «несимметричная» - синхронизация от сигнала канала I обычно более качественная и стабильная. Таким образом, подключение канала I к напряжению обеспечивает более стабильное изображение осциллограммы.

Ошибка подключения на рис. 11б состоит в том, что клеммы корпуса обоих входов не соединены в одной точке. В результате резистор Rт оказывается замкнут накоротко через корпус осциллографа. Самое неприятное, что при этом напряжение на резисторе Rт не равно нулю - из-за того, что сопротивление проводов входных кабелей (через которые этот резистор замыкается) не нулевое. Поэтому при таком подключении можно не заметить эту ошибку (ведь осциллограф что-то показывает), а результат измерения тока при этом будет неверным.

Включение, показанное на рис. 11в неудачно тем, что канал I осциллографа измеряет не напряжение в исследуемой цепи, а сумму напряжений в цепи и на резисторе Rт (напряжение измеряется не на нагрузке, а на источнике). Напряжение на Rт хоть и небольшое по величине, но все равно вносит погрешность в измерение напряжения.

Подключение осциллографа, показанное на рис. 11а не только обеспечивает наибольшую точность измерений, но и позволяет в ряде случаев использовать резистор Rт с довольно большим сопротивлением. Это важно при измерении малых токов: если и ток в цепи и сопротивление Rт малы, то возникающее на Rт напряжение может быть настолько маленьким, что чувствительности осциллографа не хватит для его отображения.

При измерении сдвига фаз необходимо инвертировать сигнал в канале II, поскольку канал II включен встречно по отношению к каналу I.

Рассмотрим переднюю панель двухканального осциллографа С1-83 (рис. 12).

Рис. 12. Передняя панель осциллографа С1-83.

А - управление каналом I.
Б - управление отображением каналов.
В - управление каналом II.
Г - регулировка яркости луча, фокусировки и подсветки экрана.
Д - управление разверткой.
Е - управление синхронизацией.

Хорошо видно, что экран осциллографа разбит на клетки. Эти клетки называются делениями, и используются при измерениях: к ним привязываются все масштабы по вертикали и горизонтали. Масштаб по вертикали - вольты на деление (В/дел или V/дел), масштаб по горизонтали секунды (милли- и микросекунды) на деление. Обычно осциллограф имеет 6…10 делений по горизонтали и 4…8 делений по вертикали. Центральные вертикальная и горизонтальная линии имеют дополнительные риски, делящие деление на 5 или 10 частей (рис. 13, на рис. 12 тоже видно). Риски служат для более точных измерений, они являются долями деления.

Рис. 13. Деления экрана осциллографа.

Управление обоими каналами одинаковое. Рассмотрим его на примере канала I (рис. 14).

Рис. 14. Органы управления канала I.

1. Переключатель режима входа. В верхнем положении «» на вход поступает и постоянное и переменное напряжение. Это называется «открытый вход» - то есть открытый для постоянного тока. В нижнем положении «~» на вход проходит только переменное напряжение, это позволяет измерять маленькое переменное напряжение на фоне большого постоянного, например в усилителях. Реализуется это очень просто: вход усилителя подключается через конденсатор. Это называется «закрытый вход». Учтите, что при закрытом входе очень низкие частоты (ниже 1...5 Гц) сильно ослабляются, поэтому измерять их можно только при открытом входе. В среднем положении переключателя 1 вход усилителя осциллографа отключается от входного разъема и замыкается на землю. Это позволяет при помощи ручки 7 выставить линию развертки в нужное место.

2. Входной разъем канала.

3, 4, 5, 6. Регулятор чувствительности канала вертикального отклонения (масштаба по вертикали). Переключатель 4 задает масштаб ступенчато. Задаваемые им значения нанесены рядом с ним. На выбранное значение указывает риска 5 на переключателе. На рисунке она указывает на значение 0,2 вольта/деление. Ручка 3, расположенная соосно с переключателем, позволяет плавно уменьшать масштаб в 2…3 раза. В крайнем правом положении (на рис. 14 ручка «плавно» находится именно в нем) эта ручка имеет фиксацию, тогда масштаб по вертикали в точности равен заданному переключателем 4. Значения масштабов, выделенные скобкой 6, указаны в милливольтах на деление - об этом говорит надпись «mV» внутри скобки.

7. Ручка выполняет две функции. При вращении она перемещает график канала по вертикали вверх или вниз . При «вытягивании» задает множитель масштаба по вертикали: вытянутая ручка (рис. 15) задает множитель х1, а утопленная множитель х10. Утопленное и вытянутое положения символически показаны над и под ручкой.

Рис. 15. Ручка множителя масштаба по вертикали вытянута в положение «х1».

Канал II (рис. 16) аналогичен каналу I:

1 - переключатель режима входа;
2 - входной разъем;
3 - масштаб плавно;
4 - масштаб ступенчато;
5 - перемещение луча по вертикали и множитель масштаба.

Рис. 16. Органы управления канала II.

Но второй канал имеет дополнительный переключатель 6, позволяющий инвертировать его входной сигнал. В нажатом положении канал работает как обычно, а в вытянутом - инвертируется, то есть при отрицательном входном сигнале луч движется вверх, а при положительном - вниз. Это необходимо при измерении, например, сдвига фаз.

На рис. 17 показано управление отображением каналов, которое определяется нажатием на одну из кнопок.

Рис. 17. Управление отображением каналов.

1 - Работает только канал I, канал II отключен.

2 - Оба канала отображаются одновременно (луч очень быстро переключается между каналами) и взаимное положение осциллограмм обоих каналов верное. В этом режиме можно измерять сдвиг фаз.

3 - Осциллограф показывает сумму или разность сигналов в каналах (знак второго канала определяется положением ручки 6 на рис. 16).

4 - Отображаются сигналы обоих каналов, но они независимы во времени, поэтому никакое сравнение сигналов относительно времени и сдвига фаз производить нельзя.

5 - Работает только канал II, канал I отключен.

Панель управления разверткой (рис. 18) похожа на панель управления каналом вертикального отклонения луча. Она содержит ручку 4, позволяющую сдвигать изображение влево-вправо и комбинированный регулятор (1 - ступенчато, 3 - плавно) скорости развертки (масштаба по горизонтали). Риска 2 на переключателе показывает установленное значение. Как и в каналах вертикального отклонения, переключатель скорости развертки имеет разные единицы измерения: секунды s , миллисекунды ms , микросекунды µs . Вытянутая/утопленная ручка 4 «» задает множитель скорости развертки х0,2 и х1 соответственно. Обратите внимание: на рис. 18 ручка 3 регулирования скорости развертки «плавно» установлена не в крайнее правое положение. Значит скорость развертки не равна значению, заданному переключателем 1, а меньше него (скорость движения луча меньше, а значение время/деление больше!).

Рис. 18. Органы управления разверткой

На панели управления синхронизацией (рис. 19) задается:

Рис. 19. Органы управления синхронизацией.

1 - Источник внутренней синхронизации: напряжением какого канала синхронизируется движение луча. Эта синхронизация производится входным сигналом, поэтому называется внутренней. Такой режим используется для большинства измерений. Варианты здесь такие: либо синхронизация только сигналом канала I. Либо попытка синхронизации от канала I, а если не получается, то синхронизация производится сигналом канала II. Первый вариант иногда работает немного лучше, поэтому надо стараться, чтобы сигнал первого канала был достаточно большой для стабильной синхронизации. В подавляющем большинстве случаев для нормальной работы следует выбирать именно этот режим синхронизации, включив кнопку «I».

2 - Внешняя синхронизация. Движение луча синхронизируется импульсами, подаваемыми со специального внешнего источника на вход синхронизации осциллографа. Такой режим иногда требуется для исследования специфических сигналов. Если внешнего источника синхронизации нет, то получить устойчивое изображение невозможно. Кнопки «0,5-5» и «5-50» задают диапазон входных напряжений от внешнего источника синхронизации. Кнопка «X-Y» совместно с кнопкой «II X-Y» управления отображением каналов (рис. 17) подает сигнал канала II на пластины горизонтальной развертки. В этом режиме можно наблюдать фигуры Лиссажу.
3 - Ручка «Уровень синхронизации». Задает напряжение синхронизации (рис. 5). В нажатом положении этой ручки (как на рисунке) развертка автоматическая. При этом движение луча будет происходить даже если синхронизации не произойдет. Луч задерживается в начале движения на некоторое время до момента синхронизации, но через некоторое время все равно начинает движение. Это «мягкий» режим, более удобный для работы, так как луч всегда остается видимым. В вытянутом положении ручки включается ждущая развертка. В этом режиме луч не начнет движения до тех пор, пока не произойдет синхронизации. Если синхронизации не происходит, луч не движется. Такой режим хорошо подходит для наблюдения непериодических сигналов. Влияние этой ручки на изображение показано на рис. 4 и 5.

4 - «Полярность» синхронизации. На самом деле знаки «+» и «-» означают несколько другое. В положении «+» синхронизация происходит по фронту, т.е. в тот момент, когда входное напряжение достигает заданного (ручкой «Уровень синхронизации») значения при нарастании входного напряжения (изменении от «-» к «+»), рис. 20. В положении «-» синхронизация происходит по спаду - при убывании входного напряжения (изменении от «+» к «-»). В осциллографе в цепи синхронизации используются две различные схемы: одна определяет равно ли входное напряжение заданному и если равно - запускает движение луча. Это напряжение задается ручкой «Уровень синхронизации». Вторая схема определяет, как при этом изменяется входное напряжение - возрастает или убывает. И соответственно разрешает первой схеме сработать.

5 - Режим входа синхронизации. Относится как к внешней, так и ко внутренней синхронизации. В положении «~» вход закрытый, и синхронизация происходит только от переменного напряжения. В положении «» вход открытый, и на срабатывание схемы синхронизации действует и переменное напряжение, и постоянное. Режим «НЧ» то же самое, но сигнал попадает на цепь синхронизации через фильтр низких частот, обрезающий высокочастотные помехи. Это режим есть не во всех осциллографах.

6 - Вход для подачи сигнала внешней синхронизации.

Рис. 20. «Полярность» синхронизации.

4. Измерения осциллографом

Измерения производятся визуально и их погрешность получается довольно высокой. Кроме того, напряжение развертки имеет невысокую линейность, поэтому погрешность измерения частоты и сдвига фаз может достигать 5%. Для минимизации погрешности, изображение должно иметь размер 80…90% от размеров экрана. При измерении напряжения и частоты (временных интервалов) необходимо ручки плавной регулировки усиления входного сигнала и скорости развертки необходимо установить в крайнее правое положение.

4.1. Измерение напряжения

Для измерения напряжения используется известное значение масштаба по вертикали. Перед началом измерения необходимо замкнуть накоротко входные клеммы осциллографа (или установить переключатель режима входа в положение ) и ручкой установить линию развертки на горизонтальную линию сетки экрана, чтобы была возможность правильно определить высоту осциллограммы, рис. 21а.

После этого на вход подается исследуемый сигнал (или переключатель режима входа устанавливается в одно из рабочих положений). На экране появляется график функции сигнала, рис. 21б.

Рис. 21. Измерение напряжения (скриншот цифрового осциллографа): а - подготовка; б - измерение.

Для того чтобы точнее измерить высоту графика, осциллограмма сдвигается ручкой так, чтобы точка, в которой измеряется амплитуда попала на центральную вертикальную линию, имеющую градуировку в долях деления (рис. 22). Получаем: чувствительность канала вертикального отклонения = 1 В/дел, размер осциллограммы 2,6 деления, следовательно амплитуда сигнала 2,6 вольт.

Рис. 22. Определение амплитуды сигнала.

Продемонстрируем измерение напряжения на самом осциллографе. Максимум напряжения имеет величину 3,4 деления (рис. 23). Определение масштаба по вертикали показано на рис. 24. Ручка «плавно» установлена в крайнее правое положение. Риска на переключателе чувствительности показывает 0,5 вольт/деление. Множитель масштаба установлен в положение х10 (утоплен). Следовательно измеряемое напряжение равно:

Рис. 23. Определение амплитуды на осциллографе С1-83.

Рис. 24. Определение масштаба по вертикали на осциллографе С1-83.

4.2. Измерение частоты

Осциллограф позволяет измерять временные интервалы, в том числе и период сигнала. Частота сигнала обратно пропорциональна его периоду. Период сигнала можно измерять в различных частях осциллограммы, но наиболее удобно и точно измерять его в точках пересечения графиком оси времени. Поэтому перед измерением линию развертки необходимо установить на центральную горизонтальную линию сетки экрана (рис. 21а).

Рис. 25. Измерение периода сигнала.

При помощи ручки начало периода совмещается с вертикальной линией сетки, рис. 25 (лучше всего начало периода совмещать с самой левой вертикальной линией экрана, тогда точность будет максимальна). Период сигнала, показанного на рис. 25 равен 6,8 делений. Скорость развертки - 100 мкс/деление (поскольку греческая буква µ, означающая «микро», не всегда доступна для отображения, ее часто заменяют латинской буквой u , сходной по начертанию). Тогда период сигнала

и его частота:

Обратите внимание, что на рисунках 22 и 25 показан один и тот же сигнал, но при различных значениях скорости развертки. Определение частоты по рис. 22 дает большее значение погрешности (точное значение частоты 1,459 кГц). Поэтому наиболее точные измерения получаются, если максимально растянуть изображение по горизонтали. И еще. На рис. 25 длительность периода сигнала чуть-чуть больше, чем 6,8 делений. Раз период больше, частота сигнала на самом деле чуть-чуть меньше, чем та, которую мы получили: реально 1,459 кГц, а у нас 1,47 кГц. На самом деле погрешность измерения меньше одного процента - это высокая точность. Такую точность обеспечивает цифровой осциллограф, у которого развертка линейна. В аналоговом осциллографе погрешность измерения частоты, скорее всего, была бы выше.

4.3. Измерение сдвига фаз

Сдвиг фаз показывает взаимное расположение двух колебательных процессов во времени. Но его измеряют не в единицах времени (которые откладываются по горизонтальной оси), а в долях периода сигнала (т.е. в единицах угла). В этом случае одинаковому взаимному расположению сигналов будет соответствовать одинаковый фазовый сдвиг, независимо от периода и частоты сигналов (т.е. независимо от реального масштаба графиков по оси времени). Поэтому наибольшая точность измерений получается, если растянуть период сигнала на весь экран.

Поскольку в аналоговом осциллографе графики сигнала обоих каналов имеют одинаковый цвет и одинаковую яркость, то для того, чтобы их различать между собой, рекомендуется сделать их разной амплитуды. При этом напряжение, измеряемое каналом I прибора, лучше делать большим - в этом случае синхронизация будет лучше «держать» изображение. Подготовка к измерениям производится так (см. рис.26, на нем для большей наглядности напряжение и ток показаны разными цветами):

Ручками обоих каналов их линии развертки устанавливаются на среднюю линию сетки экрана (при отсутствии сигналов на входах). Ручками регулировки усиления каналов вертикального отклонения (ступенчато и плавно) сигнал 1-го канала устанавливается большой амплитуды, а 2-го канала - меньшей амплитуды. Ручками регулировки скорости развертки устанавливается такая ее скорость, чтобы на экране отображался примерно один период сигнала. Ручкой «Уровень синхронизации» добиваются того, чтобы график напряжения начинался с оси времени (с линии развертки) - точка А. Ручкой добиваются того, чтобы график напряжения начинался с крайней левой вертикальной линии сетки экрана - точка А. Ручками «Скорость развертки» (ступенчато и плавно) добиваются того, чтобы период графика напряжения заканчивался на крайней правой вертикальной линии сетки экрана. Повторяют пункты 4…6 до тех пор, пока период графика напряжения не будет растянут на весь экран, причем его начало и конец должны совпадать с линией развертки (рис. 26).

Прежде, чем измерять величину сдвига фаз, необходимо определить, какой из сигналов (напряжение или ток) опережает, а какой отстает. От этого зависит знак угла сдвига фаз φ. На рис. 26а ток отстает от напряжения - начало его периода расположено во времени позже, чем начало периода напряжения (начало периода напряжения в точке А, а периода тока - в точке Б). Ток начинается позже, следовательно, он отстает, а напряжение опережает. Этой ситуации соответствуют положительные значения угла сдвига фаз. На рис. 26б ток опережает, а напряжение отстает. Поскольку начало периода тока на экране не отображается, то сравниваются окончания первого полупериода: первым к нулю вернется тот график, который начался раньше (точка Г наступает раньше во времени, чем точка В). Угол сдвига фаз при этом отрицателен.

Рис. 26. Ток отстает от напряжения, φ>0 (а); ток опережает напряжение, φ<0 (б).

Модуль угла сдвига фаз φ это расстояние между началами или между концами периода (положительного полупериода) сигналов в делениях сетки экрана (рис. 27). Далее значение модуля φ находится из пропорции, учитывая, что один полный период любого колебания равен 360 градусов:

здесь N - число делений сетки, занимаемых одним периодом сигнала,
α - число делений сетки между началами периодов (концами положительного полупериода).
В примере на рис. 18 модуль φ в обоих случаях равен:

Следует учитывать, что

Рис. 27. Измерение угла сдвига фаз.

В принципе, величину сдвига фаз можно измерить и в конце периода (точки Д и Е на рис. 26), но в правой части экрана линейность напряжения развертки наихудшая, поэтому погрешность измерения будет максимальна.
Если сдвиг фаз равен нулю (в цепи только активная нагрузка или происходит резонанс), то напряжение и ток будут начинаться и заканчиваться одновременно, рис. 28.

Рис. 28. Осциллограмма при сдвиге фаз, равном нулю.

Осциллограф - это эффективный современный прибор, предназначенный для измерения частотных параметров электрического тока во времени и позволяющий отображать их в графическом виде на мониторе, либо фиксировать их с помощью самопишущих устройств. Он позволяет измерять такие характеристики электрического тока внутри цепи, как его сила, напряжение, частота и угол фазового сдвига.

Зачем нужен осциллограф ?

Нет лаборатории, которая смогла бы функционировать долго без измерительных приборов или источников сигналов, токов и напряжения. Если же в планах заняться проектированием или созданием высокочастотных устройств (особенно серьёзной вычислительной техники, скажем, инверторных блоков питания), тогда осциллограф - это отнюдь не роскошь, а необходимость.

Особенно же хорош он тем, что помогает визуально определить форму у сигнала. Чаще всего именно такая форма хорошо показывает, что именно происходит в измеряемой цепи.
Центром всяких осциллографов выступает электронно-лучевая трубка. Можно сказать, что она вроде радиолампы, внутри, соответственно, вакуум.

Катод осуществляет выброс электронов. Установленная фокусирующая система создаёт тоненький луч из излучаемых заряженных частиц. Специальный слой люминофора покрывает весь экран внутри. Под воздействием заряженного пучка электронов возникает свечение. Наблюдая снаружи, можно заметить по центру светящуюся точку. Лучевая трубка укомплектована двумя парами пластин, которые управляют созданным таким образом лучом. Работа электронного луча осуществляется в направлениях, находящихся перпендикулярно. В итоге получаются две управляющие системы, которые создают на экране синусоиду, в которой вертикаль обозначает величину напряжения, а горизонталь — период времени. Таким образом, можно наблюдать параметры поданного на прибор напряжения в определённых временных промежутках. В зависимости от типа подаваемого на осциллограф сигнала с его помощью возможно измерение не только параметров напряжения, но и других величин того или иного тестируемого агрегата.

Какими они бывают
В настоящее время распространены осциллографы двух типов — аналоговый и цифровой (последний отличается большим удобством, расширенными функциями и зачастую более точен). Оба они работают по одинаковому принципу, и указанные ниже способы измерения физических величин могут применяться на любых моделях этого прибора.
Правильное подключение

При проведении измерений важно правильное подключение прибора к измеряемому участку цепи. Осциллограф имеет два выхода с подключаемыми к ним клеммами или щупами. Одна клемма — фазовая, она соединена с усилителем вертикального отклонения луча. Другая — земля, соединенная с корпусом прибора. На большинстве современных приборов фазовый провод заканчивается щупом либо миниатюрным зажимом, а земля — небольшим зажимом типа «крокодил» (см. фото)

На осциллографах советского производства и некоторых российских моделях оба щупа одинаковы, различить их можно либо по значку «земля» на соответствующем проводе, либо по длине — фазовый провод короче. Подключаются они к входам осциллографа, как правило, стандартным штекером (см. рисунок)

Если маркировка отсутствует, а по внешним признакам выяснить, где какой щуп, не удалось, то проводят простой тест. Одной рукой дотрагиваются до одного щупа, при этом другую руку держат в воздухе, не прикасаясь ни к чему. Если этот щуп идет на фазовый вход, то на мониторе появятся заметные помехи (см. рисунок). Они представляют собой значительно искаженную синусоиду с частотой 50 Герц. Если щуп идет к «земле», то монитор останется без изменений.


При подключении осциллографа на измеряемый участок цепи, не имеющий общего провода, щуп «земля» может быть подключен к каждой из измеряемых точек. Если общий провод имеется (это точка, соединенная с корпусом прибора либо заземленная и условно имеющая «нулевой» потенциал), то «землю» предпочтительнее подключать к ней. Если этого не сделать, то точность измерений сильно упадет (в некоторых случаях такие измерения окажутся очень далеки от истинных значений и доверять им будет нельзя).

Измерение напряжения осциллографом

За основу измерения напряжения берется известное значение вертикального масштаба. Перед началом измерений надлежит закоротить оба щупа прибора либо переключить регулятор входа в положение. Нагляднее см. следующую картинку.

После чего рукояткой вертикальной регулировки надлежит выставить линию развертки на горизонтальную ось экрана, чтобы можно было корректно определять высоту.
После этого прибор подключается на измеряемый участок цепи и на мониторе появляется график. Теперь остается только посчитать высоту графика от горизонтальной линии и умножить на масштаб. Например, если на ниже приведенном графике одну клетку считать за 1 вольт (соответственно, она разбита на штриховые деления в 0,2, 0,4, 0,6, и 0,8 вольт), то получаем общее напряжение в 1,4 вольта. Если бы цена деления была 2 вольта, то напряжение бы равнялось 2,8 вольт и так далее…


Выставление нужного масштаба осуществляется вращением специальных ручек настройки.

Определение силы тока

Для узнавания силы тока в цепи с помощью осциллографа в нее последовательно включают резистор, имеющий значительно меньшее сопротивление, чем сама цепь (такое, чтобы он практически не влиял на ее исправную работу).

После этого производят измерение напряжения по принципу, указанному выше. Зная номинальное сопротивление резистора и общее напряжение в цепи несложно, пользуясь законом Ома, рассчитать силу тока.

Измерение частоты с помощью осциллографа

Прибор позволяет успешно измерять частоту сигнала, исходя из его периода. Частота находится в прямо пропорциональной зависимости от периода и рассчитывается по формуле f=1/T, там f — частота, Т — период.
Перед измерением линию развертки совмещают с центральной горизонтальной осью прибора. При проведении измерений осциллограф подключают в исследуемую сеть и наблюдают на экране график.


Для большего удобства, используя ручки горизонтальной настройки, совмещают точку начала периода с одной из вертикальных линий на экране осциллографа. Успешно посчитав количество делений, которое составляет период, следует умножить его на величину скорости развертки.
Рассмотрим на конкретном примере подробнее. Например, период составляет 2,6 делений, развертка — 100 микросекунд/деление. Умножая их, получаем величину периода равную 260 микросекунд (260*10-6 секунд).
Зная период, рассчитываем частоту по формуле f=1/T, в нашем случае частота примерно равна 3,8 кГц.
Измерение сдвига фаз

Сдвиг фаз — это величина, указывающая взаимное положение двух колебательных процессов в течение времени.
Измерение его производят не в секундах, а в долях периода (Т) сигнала. Достичь максимальной точности измерений этого показателя возможно в том случае, если период растянут масштабированием на весь экран.
В современном цифровом осциллографе абсолютно каждый из сигналов имеет свой цвет, что очень удобно при измерениях. В старых же аналоговых вариантах их яркость и цвет, к сожалению, одинаковы, поэтому для большего удобства следует сделать их амплитуду различной. Подготовка измерения сдвига фаз требует точных подготовительных операций.
Первое, что нужно сделать — не подключая прибор к измеряемой цепи, установить ручками вертикальной настройки линии развертки обоих каналов на центральную ось экрана. Затем ручками настройки усиления каналов вертикального отклонения (плавно и ступенчато) 1-й сигнал устанавливается с большей амплитудой, а второй — с меньшей. Ручками регулирования скорости развертки ее величина устанавливается такой, чтобы оба сигнала на экране имели примерно одинаковый период. После этого, регулируя уровень синхронизации, совмещают начало графика напряжения с осью времени. Ручкой горизонтальной настройки устанавливают начало графика напряжения в крайней налево вертикальной линии. Затем ручками регулировки скорости развертки добиваются того, чтобы конец период графика напряжения совпадал с крайней направо вертикальной линией сетки монитора.
Все эти подготовительные операции производят по порядку до тех пор, пока график периода напряжения не растянется на экран полностью. При этом он должен начинаться и заканчиваться в линиях развертки (см. рисунок).


После завершения подготовительного этапа следует выяснить, какой из параметров опережает другой — сила тока или напряжение. Величина, начальная точка периода которой начинается раньше во времени, является опережающей, и наоборот. Если опережающим является напряжение, то параметр угла сдвига фаз будет положительным, если сила тока — отрицательным. Углом сдвига фаз (по модулю) является дистанция между началами и концами периодов сигналов в величине сетки делений монитора. Он рассчитывается по такой формуле:

В ней величина N — это количество клеток сетки, которые занимает один период, а α — количество делений между началами периодов.
Если графики периодов силы тока и напряжения имеют общие начальную и конечную точки, то угол сдвига фаз равняется нолю.
При ремонте радиоаппаратуры поиск неисправностей ведут, измеряя осциллографом обозначенные выше параметры на отдельных участках электронной цепи или у конкретных электронных компонентов (например, микросхем). Затем их сравнивают с указанными в технологических каталогах величинах, стандартных для этих компонентов, после чего и делают выводы о безошибочной работе или неисправности того или иного элемента цепи.

Эта заметка будет постепенно пополняться простыми, но полезными приёмами работы с осциллографом.

Вступление

Главный вопрос, на который следует ответить: "что можно измерить с помощью осциллографа?" Как ты уже знаешь, этот прибор нужен для изучения сигналов в электрических цепях. Их формы, амплитуды, частоты. По полученным данным можно сделать вывод и о других параметрах изучаемой цепи. Значит с помощью осциллографа в основном можно (я не говорю про супер функции супер-современных приборов):

  • Определить форму сигнала
  • Определить частоту и период сигнала
  • Измерить амплитуду сигнала
  • Не напрямую, но измерить ток тоже можно (закон Ома в руки)
  • Определить угол сдвига фазы сигнала
  • Сравнивать сигналы между собой (если прибор позволяет)
  • Определять АЧХ
  • Забыл что-то упомянуть? Напомните в комментариях!

Все дальнейшие примеры следует делались с рассчетом на аналоговый осциллограф. Для цифрового всё тоже самое, но больше умеет, чем аналоговый и в определённых вопросах снимает необходимость думать там, где можно просто показать цифру. Хороший инструмент таким и должен быть.

Итак, перед работой следует подготовить прибор: поставить на стол, подключить к сети =) Да ладно, шучу. Но если есть возможность, то следует его заземлить. Если есть встроенный калибратор, то по инструкции к прибору надо его откалибровать. (подсказка: инструкции есть в сети).

Подключать свой осциллограф к исследуемой цепи ты будешь с помощью щупа. Это такой коаксильный провод, на одном конце которого разъем для подключения к осциллографу, а на втором щуп и заземление для подключения к исследуемой цепи. Какой попало провод в качестве щупа использовать нельзя. Только специальные щупы. Иначе вместо реальной картины дел увидишь чушь.


Я не буду рассматривать каждый регулятор осциллографа подробно. В сети есть море таких обзоров. Давай лучше учиться как проводить любительские измерения: будем определять амплитуду, частоту и период сигнала, форму, полосу пропускания усилителя, частоту среза фильтра, уровень пульсаций источника питания и т.д. Остальные хитрости и приёмы придут с практикой. Тебе понадобится осциллограф и генератор сигнала.

Виды сигналов

Буду говорить без барских штучек, по-мужицки. На экране осциллографа ты будешь видеть либо синусоидальный сигнал, либо пилу, либо прямоугольнички, либо треугольный сигнал, либо просто какой-нибудь безымянный график.

Все виды сигналов не перечесть. Да и сами сигналы не знают, что относятся к какому-то там виду. Так что твоя задача не названия запоминать, а смотреть на экран и быстро соображать, что означает увиденное на нём, какой процесс идёт в цепи.

Амплитуда, частота, период

Осциллограф умеет измерять как постоянное, так и переменное напряжение. У всех приборов для этого есть два режима: измерение только переменного сигнала, измерение постоянного и переменного одновременно.

Это значит, что если ты выберешь измерение переменного сигнала и подключишь щуп к батарейке, то на экране прибора ничего не изменится. А если выберешь второй режим и проделаешь тоже самое, то линия на экране прибора сместится приблизительно на 1.6В вверх (величина ЭДС пальчиковой батарейки). Зачем это нужно? Для разделения постоянной и переменной составляющей сигнала!

Пример. Решил ты измерить пульсации в только что собранном источнике постоянного напряжения на 30В. Подключаешь к осциллографу, а луч убежал далеко вверх. Для того, чтобы удобно наблюдать сигнал придется выбрать максимальное значение В/дел на клетку. Но тогда ты пульсаций точно не увидишь. Они слишком малы. Что делать? Переключаешь режим входа на измерение переменного напряжения и крутишь ручку В/Дел на масштаб в разы поменьше. Постоянная составляющая сигнала не пройдет и на экране будут показываться только только пульсации источника питания.

Амплитуду переменного напряжения легко определить зная цену деления В/дел и просто посчитать число клеток по оси ординат, которые занимает этот сигнал от нулевого значения (среднего), до максимального.


Если посмотреть на экран осциллографа на картинке выше и предположить, что В/дел = 1В, тогда амплитуда синусоиды будет 1.3В.

А если предположить, что Время/дел (развертка) установлено в 1 миллисекунду, тогда период этой синусоиды будет занимать 4 клетки, а зачит период T = 4 мс. Легко? Давай теперь вычислим частоту этой синусоиды. Частота и период связаны формулой: F = 1/T (Т в секундах). Следовательно F = 1/ (4*10 -3) и равняется 250 Гц.

Конечно, это очень грубая прикидка, которая годится только для вот таких чистеньких и красивых сигналов. А если подать вместо чистой синусоиды какую-нибудь музыкальную композицию, то в ней будет множество разных частот и на глазок уже не прикинешь. Чтобы определить какие частоты входят в эту композицию потребуется анализатор спектра. А это уже другой прибор.

Измерение частоты

Как я уже писал выше, с помощью осциллографа можно измерять и частоту. А ещё можно не просто измерить частоту какого-нибудь синусоидального сигнала, а даже сравнить частоты двух сигналов, к примеру, с помощью фигур Лиссажу.

Это очень удобно, когда хочется, например, откалибровать собранный своими руками генератор сигналов, а частотомера под руками нет. Тогда и приходят на помощь фигуры Лиссажу. Жаль не все аналоговые осциллографы могут их показывать.

Сдвиг фаз

Частенько бывает так, что фаза тока и фаза напряжения расходятся. Например, после прохождения через конденсатор, индуктивность или целую цепь. И если у тебя есть двухканальный осциллограф, то легко можно посмотреть как сильно отличаются фазы тока и напряжения (А если есть современный цифровой, то там есть даже специальная функция для измерения сдвига фаз. Круто!) . Для этого следует подключить осциллограф вот таким образом:

Похожие публикации