Ноутбук и компьютер - Информационный портал

Можно ли проверить силовой тиристор мегаомметром. Как проверять тиристоры — пошаговая инструкция. Как проверять симисторы и тиристоры универсальным мультиметром. Тестирование детали на плате

25.06.2018

Для коммутации электрических сетей переменного тока используются различные элементы. Чаще всего используются мощные симисторы, которые необходимы для проектирования трансформаторов и зарядных устройств.

Симисторы – это вид тиристоров, которые являются аналогами кремниевых выпрямителей в корпусе. Но, в отличие от тиристоров, которые являются однонаправленными приборами, т. е. передают ток только в одном направлении, триаки – двухсторонние. С их помощью можно передавать ток в обоих направлениях. Они имеют пять слоев тиристора, которые оснащены электродами. При первом взгляде, отечественные симисторы напоминают структуру р-n-р , но у них несколько областей с проводимостью n-типа. Последняя область, которая расположена после этого слоя, имеет прямую связь с электродом, что обеспечивает высокую проводимость сигнала. Иногда их также сравнивают с выпрямителями, но при этом стоит помнить, что диоды передают электрический сигнал только в одну сторону.

Фото - использование тиристора

Симистор считается идеальным устройством для использования в коммутационных сетях, так как он может контролировать ток идет через обе половины переменного цикла. Тиристор же контролирует только полуцикл, при этом вторая половина сигнала не используется. Благодаря такой особенности работы, триак отлично передает сигналы любых электрических приборов, часто применяется симистор вместо реле. Но при этом симистор редко используется в сложных электрических приборах, таких как трансформаторы, ЭВМ и т. д.

Фото - симистор

Видео: как работает симистор

Принцип действия

Принцип работы симистора очень похож на тиристор, но его проще понять исходя из работы тринисторного аналога того компонента электрических сетей. Обратите внимание, четвертый полупроводниковый компонент разделен, что позволяет выполнять следующие функции:

  1. Контролировать работы катода и анода;
  2. При необходимости менять их местами, что позволяет изменять полюсность работы.

При этом работу прибора можно расценивать как сочетание двух встречно-направленных тиристоров, но работающих в полном цикле, т. е. не обрывающих сигналы. Маркировка на схеме соответствующая двум соединенным тиристорам:

Фото - тринисторный аналог симистора

Согласно чертежу, на электрод, который является управляющим, передает сигнал, позволяющий открыть контакт детали. В момент, когда на аноде положительное напряжение, соответственно на катоде отрицательное – электроток начнет протекать через тринистор, который на схеме с левой стороны. Исходя из этого, если полностью изменить полярность, что поменяет местами заряды катода и анода, ток, передающийся через контакты пойдет через правый тринистор.

Здесь последний слой на симисторе отвечает за полярность напряжения. Он контролирует напряженность на контактах и сравнивая её, переправляет ток на определенный тринистор. Прямопорционально этому, если сигнал не подается – то все тринисторы закрыты и устройство не работает, т. е. не передает никакие импульсы.

Если сигнал есть, существует подключение к сети и ток куда-то должен течь, то симистор в любом случае его проводит полярность направления в этом случае диктуется зарядом и полярностью полюсов, катодом и анодом.

Обратите внимание, на схеме выше дана вольт-амперная характеристика (ВАХ) симистора, на рисунке 3. Каждая из кривых имеет параллельное направление, но в другую сторону. Они повторяют друг друга под углом 180 градусов. Такой график позволяет говорить, что симистор – это аналог динистора, но при этом области, через которые сигнал динисторы не передают, очень легко преодолеваются. Параметры устройства можно корректировать, подавая ток разных напряжений, это позволит отпирать контакты в нужную сторону, просто изменяя полярность сигнала. На чертеже места, которые могут изменяться, отмечены штриховыми линиями.


Фото - симисторы

Благодаря этой ВАХ становится понятно, почему стабилизированный тиристор получил такое название. Симистор – означает «симметричный» тиристор, в некоторых учебниках и магазинах его могут называть триаком (иностранный вариант).

Область использования

Двунаправленность делает симисторы очень удобными переключателями для цепей переменного тока, позволяя им контролировать большие потоки электрической энергии, проходящие через маленькие контактные полюса. Помимо этого можно контролировать даже процентное соотношение тока индуктивной нагрузки.


Фото - работа симистора

Устройства используются в радиотехнике, электромеханике, механике и прочих отраслях промышленности, где может понадобиться контроль течения тока. Оптосимисторы часто используются в системах сигнализации и светорегуляторах, где для корректной работы приборов необходим полный цикл, а не полупериод. Хотя довольно часто применение этой радиодетали не эффективно. Например, для работы небольшого микроконтроллера или трансформатора иногда лучше подключить маломощные тиристоры, которые будут обеспечивать работу обоих периодов одинаково.

Проверка, распиновка и использование симисторов

Для того чтобы использовать устройство в работе, нужно знать, как проверить симистор мультиметром или «прозвонить» его. Для проверки Вам нужно оценить характеристики, управляемых кремниевых диодов. Такие выпрямители позволяют настроить нужные показания и провести испытания. Отрицательный контакт омметра подключается к катоду, а положительный устанавливается на анод. После нужно выставить на омметре показатель на единицу, и соединить контрольный электрод с выводом анода. Если данные будут находиться в пределах 15 и 50 Ом, то деталь работает нормально.


Фото - управление светом симисторами

Но при этом, когда Вы отключите контакты от анода, то на устройстве должны сохраниться показания омметра. Следите за тем, чтобы простое измерительное устройство не показывало остаточного сопротивления, иначе это будет говорить о том, что деталь не рабочая.

В быту симисторы часто используются для создания приборов, продлевающих срок службы различных устройств. Например, для ламп накаливания или измерителей Вы можете сделать регулятор мощности (понадобится тиристор MAC97A8 или ТС).


Фото - схема регулятора мощности на симисторе

На схеме показан, как собрать регулятор мощности. Обратите внимание на элементы DD1.1.DD1.3, где указан генератор, за счет этой детали производиться около 5 импульсов, которые представляют собой полупериоды одного сигнала. Импульсы контролируются при помощи резисторов, а транзистор с выпрямляющими диодами контролирует момент включения симистора.


Фото - измерение симистора

Данный транзистор открыт, исходя из этого, на вход генератора подходит сигнал, пока симисторы и оставшиеся транзисторы закрыты. Но если в момент открытия контактов состояние генератора не измениться, то накопительными элементами будет сгенерирован небольшой импульс для того, чтобы запустилась цоколевка. Такая схема диммера на симисторе может использоваться для контроля работы осветительных приборов , стиральной машине , оборотов пылесоса или ламп накаливания с датчиком движения. Тестером проверьте работоспособность схемы и можете использовать её.


Фото - работа симистора

Для усовершенствования системы, можно устроить управление симистором через оптопару, чтобы включение элемента в работу происходило только после сигнала. Обратите внимание, если при прокрутке барабана, очень резко происходят движения – то неисправен электронный модуль. Чаще всего сгорает симистор, импортные проводники часто не выдерживают скачков напряжений. Для его замены просто подберите такую же деталь.


Фото - зарядное устройство на тиристоре

Аналогично по схеме можно собрать зарядное устройство на симисторе, в зависимости от требований понадобится просто купить маломощные или силовые детали КУ208Г, КР1182ПМ1, Z0607, BT136, BT139 (BTB – ВТВ, BTA – ВТА также подойдут). В бытовых импортных условиях используются зарубежные триаки, цены на которых немного выше.

Для проверки радиоэлементов на работоспособность, чаще всего используется мультиметр. Он хорош тем, что с его помощью, можно быстро выявить радикальные дефекты большинства радиодеталей. Минус тут в том, что не каждым мультиметром, и не каждую деталь, можно протестировать досконально.

Аналоговый мультиметр

Чаще всего называемый тестером, реже – авометром (Ампер-Вольт-Ом-метр) и, почти никогда, непосредственно мультиметром. Состоит из прецизионной стрелочной головки потенциометра и сложных коммутируемых цепей измерения. Причем, внутренняя батарея питания (4,5-9 В.) нужна лишь для измерения сопротивления. Напряжение и ток можно измерить и без нее.
Проверить тиристор мультиметром такого плана, можно только при наличии свежей, не разряженной батарейки.

Цифровой мультиметр

Так и называют, реже – тестером, и, почти никогда – авометром. Состоит из упрощенных коммутируемых цепей измерения обслуживающих микроконтроллер с АЦП (аналого-цифровой преобразователь). Его широкий диапазон измерения, чувствительность и точность, позволяют обойтись и без них. Внутренний элемент питания (1-9 В) используется не только для измерения сопротивления, но и для питания микроконтроллера и его периферии.

Как проверить тиристор мультиметром

Рассмотрим последовательность действий для определения работоспособности тиристора.

  1. Прозвонка анод-катод, при любом приложении щупов:
    • аналоговый покажет бесконечность, стрелка не двинется;
    • цифровой или никак не отреагирует или высветит несколько МОм.
  2. При прозвонке анод-управляющий электрод:
    • аналоговый покажет от нескольких до десятков кОм;
    • цифровой выдаст такие же цифры.
  3. При прозвонке катод-управляющий электрод:
    • то же самое для обоих приборов.

Теперь попробуем проверить тиристор на открытие, его основную работу. Для этого, минусовой щуп приложим к катоду, плюсовой к аноду и им же, не отрывая от анода, кратковременно коснемся управляющего электрода. Тиристор должен открыться (сопротивление упасть почти до 0 Ом) и удерживаться в таком состоянии до разрыва цепи.
Если этого не произошло то:

  • перепутаны плюсовой и минусовой щупы тестера;
  • неподходящий тестер или разряженная батарея в нем;
  • тиристор неисправен.

Перед тем, как выбросить тиристор, проверим мультиметр и правильность своих действий при работе с ним:

  • земляной (корпусный или COM) щуп аналогового тестера – является плюсовым, а у цифрового мультиметра наоборот – минусовым.
  • диапазон измерения должен быть выставлен на 100-2000 Ом, в зависимости от градации коммутационного блока;
  • питание измерительного прибора должно осуществляться свежей, не разряженной батареей с напряжением от 4,5 до 9 вольт;
  • на шкале цифрового мультиметра, в секторе измерения сопротивлений, должен присутствовать значок диода.

Цифровые тестеры-игрушки, размером со спичечную коробку и питанием от часового аккумулятора, для проверки полупроводниковых элементов не подходят. Да и полагаться на другие их измерения не стоит. Но и утверждать, что проверить тиристор цифровым мультиметром невозможно (а такое мнение бытует), тоже неверно. Можно, причем очень даже многими. Соблюдение вышеперечисленных правил, позволяет добиться положительных результатов с разными приборами.

Тринистор - это особый вид полупроводников, который относится к подклассу тиристоров и к классу диодов. Он представляет из себя диод, но у этого "диода" имеется также и третий вывод, называемый Управляющим Электродом (УЭ). Получается, тринистор - это диод с тремя выводами:-).Тринисторы также называют по виду подкласса - тиристоры - и ошибки в этом нет, поэтому в этой статье я их буду называть просто тиристорами.

Выглядят они как-то вот так:

А вот и схемотехническое обозначение тиристора

Принцип работы тиристора основан на Принципе работы реле. Реле - это электромеханическое изделие, а тиристор - чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами и соседкой тетей Валей килограммов под двести и вы перемещаетесь с этажа на этаж. Как же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту? В этом примере и основан принцип работы тиристора. Управляя маленьким напряжением кнопочки мы управляем большим напряжением... разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги (короче говоря с помощью Короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)

Тринисторы, которые слева, устанавливают на алюминиевые радиаторы, а тринисторы-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешенная сила тока и коммутируют они очень большую мощность.

Маломощные тринисторы используются в радиопромышленности и, конечно же, в радиолюбительстве.

Давайте разберемся с некоторыми важными параметрами тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) U y - - наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тринистора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тринистор и электрический ток начинает спокойно себе течь через два оставшихся вывода - анод и катод тринистора. Это и есть минимальное напряжение открытия тринистора.

2)U обр max - обратное напряжение , которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус - на анод.

3) I ос ср - среднее значение тока , которое может протекать через тринистор в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Ну и наконец-то переходим к самому важному - проверке тринистора. Будем проверять самый ходовый и знаменитый советский тринистор - КУ202Н.

А вот и его цоколевка

Для проверки тринистора нам понадобится лампочка, три проводка и Блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тринистора.

На анод подаем "плюс" от блока питания, на катод через лампочку "минус".

Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тринистора U y - отпирающее постоянное напряжение управления больше чем 0,2 Вольта. Берем полутора вольтовую батарейку и подаем напругу на УЭ. Вуаля! Лампочка зажглась!

также можно использовать щупы мультиметра в режиме прозвонки, на щупах напруга тоже больше 0,2 Вольта

Убираем батарейку или щупы, лампочка должна продолжать гореть.

Мы открыли тиристор с помощью подачи на УЭ импульса напряжения. Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.

Можно также проверить тиристор с помощью Мультиметра. Для этого собираем его по этой схемке:

Так как на щупах мультика в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает. На мультике мы видим 112 миллиВольт падение напряжения. Это значит, что он открылся.

После отпускания мультик снова показывает бесконечно большое сопротивление.

Почему же тиристор закрылся? Ведь лампочка в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ. Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.

Также советую глянуть видео от ЧипДипа про проверку тиристора и ток удержания:

Любые электроприборы и электрические платы основаны на комплексе различных радиоэлементов, которые являются основой для нормального функционирования всего многообразия электротехники. Одним из основных элементов любой электросхемы является симистор, который представляет собой один из видов тиристора.

Говоря тиристор, мы также будем подразумевать и симистор. Его предназначение заключается в коммутации нагрузки в сети переменного тока. Внутреннее устройство включает три электрода для передачи электрического тока: управляющий и 2 силовых.

Предназначение и использование симисторов в радиоэлектронике

Особенность тиристора заключается в пропускании тока от одного контакта (анода) к другому (катоду) и в обратном направлении . Любой тиристор управляется как положительным, так и отрицательным током. Для его работы нужно подать низковольтный импульс на управляющий контакт. После такой сигнальной подачи симистор открывается и переходит из закрытого состояния в открытое, пропустив, через себя ток. Во время прохождения отпирающего тока через управляющий контакт он открывается. А также отпирание происходит, когда напряжение между электродами превышает определённую величину.

При подаче переменного тока смена состояния тиристора вызывает изменение полярности напряжения на силовых электродах. Он закрывается, при смене полярности между силовыми выводами, а также когда рабочий ток ниже, чем ток удержания. Для предотвращения ложного срабатывания симистора, вызванное различными радиомеханическими помехами, использующиеся приборы имеют дополнительную защиту. Для этого обычно используется демпферная RC цепочка (последовательное соединение резистора и конденсатора постоянного тока) между силовыми контактами симистора. Иногда используется индуктивность. Она служит для ограничения скорости изменения тока при коммутации.

Симисторы в электросхеме

Если говорить о симисторах, необходимо принять во внимание и тот факт, что это один из видов тиристора, который тоже имеет три и более p - n переходов . Их различие лишь в управляющем катоде, который определяет соответственные переходные характеристики пропускаемого тока и в принципе работы в электросхемах. Обычно они начинают свою работу сразу после запуска подводящего напряжения на нужный контакт.

Схема управления симистора

Схема управления на тиристоре проста и надёжна. Они намного упрощают принципиальную схему своим присутствием, освобождая её от лишних электродеталей и дорожек. Тем самым облегчая и дальнейший ремонт (проверка и прозвонка) в случае необходимости или выхода из строя радиоэлектронных блоков с их участием.

Практическое применение симисторов

Необходимые знания для проверки, замены и последующего ремонта различных радиоэлектронных блоков с участием симисторов или тиристоров помогут любому радиолюбителю в повышении своих профессиональных и практических навыков.

В электронных схемах различных приборов довольно часто используются полупроводниковые устройства – симисторы. Их применяют, как правило, при сборке схем регуляторов. В случае неисправности электроприбора может возникнуть необходимость проверить симистор. Как это сделать?

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Как часто у нас бывало, что собранная на новых деталях электросхема не работала? Качество комплектующих из магазина, а тем более с радиорынка, зачастую оставляет желать лучшего, а про электрокомпоненты, которые уже были в использовании и говорить не приходится. В таком случае проверить их на исправность перед использованием будет точно не лишним. Сегодня мы поговорим о том, как проверить на исправность тиристор.

Что такое тиристор?

Тиристор – это полупроводниковый прибор, который выполнен по классической монокристальной технологии. На встроенном кристалле имеются несколько (чаще всего три) p-n перехода, обладающие полностью противоположными устойчивыми состояниями. В основном тиристоры используются как электронный ключ и могут успешно заменить такие радиоэлементы как механическое реле. Основными преимуществами тиристоров являются:

  • Плавное и регулируемое включение.
  • Контроль скорости нарастания рабочего тока.
  • Отличная интегрируемость в сложные схемы.
  • Отсутствие искрения и помех.
  • Компактность детали.
  • Отсутствие необходимости постоянно подавать управляющий сигнал.

Проверка тиристора без мультиметра

Если под рукой не оказалось мультиметра, а проверить тиристор надо, существует простой способ, как это сделать. Нужно взять обычную батарейку и лампочку на 1,5В и подключить их последовательно через тиристор. При подаче на тиристор управляющего тока лампочка должна загореться. Далее следует отключить батарейку, но сохранить источник тока управления, если лампочка при этом продолжает гореть, то значит, что ее p-n переход исправен. Если лампочки и батарейки в наличии нет, то самый верный способ проверить тиристор – это с помощью цифрового или аналогового мультиметра.

Проверка тиристора мультиметром

Первое, что нужно сделать перед проверкой – это убедиться в наличии свежей, неразряженной батарейки в приборе. Проверить ее можно самим же прибором, для измерения напряжения питание в нем не требуется. Дальше последовательность действий для проверки следующая:

  • Установить мультиметр в режим прозвонки. Так как рабочего тока недостаточно для открытия p-n перехода, то сопротивление будет высоким, и ток проходить не будет. В этом случае мультиметр должен показать цифру 1, если это так, то переход у нас не пробит и можно приступать к другим проверкам.
  • Не переключая режим мультиметра соединяем управляющий электрод с анодом. При этом ток становится достаточным для открытия p-n перехода и сопротивление резко уменьшается. Прибор при этом должен показывать цифры меньше единицы, что соответствует открытому состоянию тиристора. Таким образом проверяется исправность управляющего элемента.
  • Размыкаем контакты и на дисплее мультиметра снова должна загореться цифра 1. В таком случае тиристор не может продолжать быть открытым, потому что прибор не вырабатывает достаточной силы тока для срабатывания тиристора по току удержания. Этот параметр проверить с помощью мультиметра мы не сможем.
  • Меняем полярность на приборе и пробуем произвести те же самые манипуляции, проверка будет неудачна. Так мы сможем выявить отсутствие обратного пробоя в тиристоре.
  • Также можно проверить тиристор на чувствительность. Для этого пункты 1-3 следует выполнять с включенным на мультиметре режимом омметра, а не режимом прозвонки. Для начала омметр нужно выставить на чувствительность х1, потом на х10 и так до тех пор, пока после отключения управляющего тока переход не закроется. Чем меньше ток удержания, тем более чувствительным считается тиристор. При выборе деталей и возможности их проверки, нужно отдать предпочтение тем тиристорам, чувствительность у которых выше.


Если тиристор находится в составе какой-либо монтажной схемы, нет необходимости выпивать его для проверки, достаточно отключить управляющий электрод.

Как видите, проверить тиристор в домашних условиях достаточно легко и не требует много времени. Не пренебрегайте проверкой радиокомпонентов перед сборкой сложных схем. Несколько затраченных секунд в начале поможет сэкономить время, потраченное потом на выявление детали, которая не работает уже на собранной схеме. И напоследок наглядная видеоинструкция по этому процессу, удачи в монтировании.

Тиристоры как отдельный вид полупроводников, относится к категории диодов. Но в отличие от них, у тиристора есть третий вывод, предназначенный для выполнения задач управляющего электрода.

В фактическом понимании – диод с тремя выводами. Такие полупроводниковые устройства широко применяются и в бытовых приборах, и в регуляторах мощности всевозможных источников света.

Учитывая масштабы использования тиристора, многие домашние мастера сталкиваются с проблемой выхода устройства из строя, но, как и чем его протестировать не знают. Итак, для начала, нужно понять, что это такое и каков его принцип действия.

Что такое тиристор

Тиристор представляет собой одну из разновидностей полупроводниковых приборов, использующих в основе своей работы p-n – переходы. Это электронный ключ, при помощи которого можно регулировать мощную нагрузку с использованием слабых сигналов.

На рынке электротоваров полупроводниковые устройства представлены в достаточно широком ассортименте, классификация которых осуществляется с учетом метода управления и от проводимости:

  • Динистор (диодный радиоэлемент) – оснащен двумя выводами, а переключение в открытое положение происходит за счет импульсов напряжения с конкретной амплитудой;
  • Триодный прибор – не способен пропускать в обратном направлении, он функционирует за счет пульсации тока управления, а процесс выключения происходит или при подаче обратного напряжения, или отключением тока в открытом положении. Учитывая коммутационные параметры, устройства бывают и низкочастотными, и высокочастотными, и быстродействующими, и импульсными;
  • Запираемый тиристор – отключение производится за счет импульсов тока управления (относительно триодного прибора отключается быстрее);
  • Комбинированно-выключаемый радиоэлемент – отключается при подаче импульса тока управления при одновременном приложении обратного анодного напряжения;
  • Симистор-устройство с тремя электродами с пятислойной структурой, которое способно в открытом состоянии пропускать ток, и в прямом направлении, и в обратном;
  • Оптотиристор-радиоэлемент со встроенным светодиодом, за счет которого происходит управление от светового сигнала.

Полупроводниковые приборы данной категории активно используются в составе электронных ключей, выпрямителей, преобразователей, электронном зажигании, регуляторах мощности.

Принцип работы

Тиристоры подразделяются на:

  • устройства, пропускающие ток в прямом направлении – от «анода» к «катоду»;
  • устройства, пропускающие ток в обоих направлениях.

Работа переключающегося радиоэлемента сводится к выполнению функции ключа. На управляющий электрод подается команда, благодаря которой устройство получает соответствующее положение: открытый или закрытый.

Помимо этого, устройства данной категории классифицируют на запираемые и незапираемые.

Функционирование запираемых радиоэлементов было описана выше. Незапираемые полупроводниковые изделия переводятся в закрытый режим не за счет команды на управляющем электроде, а при условии, что проходящий через «анод» и «катод» ток принимает величину меньшую, чем ток удержания.

Чем можно проверить

Протестировать работоспособность полупроводника можно следующими способами:

  • Метод с применением обычной низковольтной лампочки и батарейки. Для этого потребуются: лампочка, три проводка и блок питания с постоянным током. Первым делом выставляется конкретное для загорания лампочки напряжение на блоке питания. Затем к каждому из электродов нужно припаять проводок. Посредством блока питания подается плюс на анод, а минус на катод. После чего, посредством батарейки на 1,5В происходит подача напряжения на управляющий электрод. В качестве индикатора здесь выступает лампочка, если она засветилась, то, переключающийся радиоэлемент функционирует в штатном режиме.
  • Метод с использованием мультиметра, омметра или тестера. Это наиболее привычный и стандартный способ проверки, где анод и управляющий электрод (его контакты) подключаются к измерительному прибору. Здесь в качестве источника тока выступают батареи прибора, а отклонение стрелки (у аналоговых моделей) либо цифровые показания на экране (у цифровых изделий) используются как показатели исправности/неисправности устройства. Если прибор показывает большое сопротивление, значит, устройство закрыто, если же указывает на небольшие величины – открыто.
  • Метод с применением двух стрелочных тестеров – омметров. В этом случае два отрицательных вывода с омметров подключаются к катоду тиристора. Положительный вывод одного из омметров подключается к аноду. Сопротивление на табло этого омметра стремится к бесконечности. Как только, положительный вывод другого омметра кратковременно подключается к управляющему электроду тиристора сопротивление предыдущего омметра сразу уменьшается до нескольких десятков Ом поскольку происходит отпирание тиристора.

Как проверить

Учитывая частый выход радиоэлемента из строя, для своевременного нахождения причины неисправности, желательно иметь удобный комбинированный измерительный прибор либо упрощенной модификации, либо цифрового исполнения.

Чтобы получить достоверный результат при проверке, рекомендуется собрать специальное приспособление по предложенной схеме.

Описание схемы

Структура тиристора включает в себя, четыре чередующихся слоя p и n типа проводимости p1n1p2n2. Между слоями образуются электронно-дырочные переходы. Слои p1 и n2 и переходы p1n1 и p2n2 получили название эмиттерных, внутренние слои n1 и p2 и переход между ними являются базовыми, а переход между ними – коллекторный.

Подключение к схеме тиристора возможно благодаря трем выводам:

  • «Анод» – отвод от слоя p1. На него подается сигнал положительной полярности;
  • «Катод» – отвод от слоя n2. К нему подключается провод с отрицательной полярностью;
  • «Управляющий электрод» – отвод от слоя n1. На него подается управляющий сигнал, благодаря которому данный радиоэлемент приводится в рабочее состояние. (Исключение составляют динисторы – у них только два вывода и нет управляющего вывода).

Для проверочных работ над устройствами малой и средней мощности необходимо произвести подачу напряжения на выводы «анод» и «катод», а на управляющий электрод пустить кратковременный сигнал для открытия проводимости между «анодом» и «катодом».

В мультиметре при установке положения измерения сопротивления между щупами возникает напряжение. Можно воспользоваться им при тестировании прибора.

Пошаговое руководство

  1. На катодный отвод тиристора подсоединить черный щуп с отрицательным значением.
  2. На анодный конец тиристора прикрепить красный щуп с положительным значением.
  3. К управляющему электроду подключить выключатель, а другой конец выключателя подсоединить к мультиметру в гнездо с красным щупом.
  4. Установить мультиметр в положение измерения сопротивления в пределах не более 2000 Ом.
  5. Включить выключатель кратковременно и через несколько секунд отключить его.
  6. Проверить удерживается ли прохождение тока. Если да, то тиристор исправен. Для отключения его достаточно прекратить подачу напряжения на «катод» или «анод».
  7. Если данная процедура не дала результата, т.е. проводимость не удерживается, то необходимо выключатель переставить на черный щуп вместо красного и снова повторить пункты 4-6.
  8. Если и в этом случае нет удержания прохождения тока, то тиристор не годится к применению.

Как проверить не выпаивая

Для проверки полупроводникового прибора без выпаивания почти из любой схемы вполне может подойти вышеуказанный метод с применением мультиметра, только необходимо отключить управляющий электрод из цепей схемы.

  1. Прежде чем, начать тестировать тиристор, необходимо ознакомиться с его техническими характеристиками и принципом работы. Именно эти познания помогут точно оценить результаты проверки.
  2. Стандартный мультимер вполне подходит для проверки работоспособности данного радиоэлемента, но современный цифровой прибор отличается не только точностью показаний, но и удобством при эксплуатации.
  3. Собирать измерительное приспособление нужно в полном соответствии с предложенной схемой.

Довольно большое распространение получили тиристоры. Они применяются при создании различных электрических приборов и мощных силовых установок. Особенности рассматриваемых полупроводников заключаются в том, что проверить их при применении мультиметра достаточно сложно. Для полноценной проверки нужно собрать сложную схему. Важно понимать, как проверить тиристор мультиметром, так как пробой и внутренний обрыв являются распространенными проблемами.

Предварительная подготовка

Подобный измерительный прибор получил широкое распространение: применяется для определения различной информации. Предварительная подготовка предусматривает расшифровку спецификации , для чего достаточно рассмотреть маркировку на полупроводниковом изделии.

После определения типа изделия и цоколевки можно приступить к тесту пробоя при помощи мультиметра. В большинстве случаев проводится проверка на пробой, для чего изделие можно оставить на плате, поэтому на этом этапе не требуется паяльник.

Тест на пробой

Проверка тиристора начинается с определения пробоя. Рекомендуется начинать с предварительного тестирования, которое связано с измерением сопротивления между двумя выходами «А» и «К», «К» и «УЭ». Алгоритм действий имеет следующие особенности:

Проверка симистора мультиметром подобным образом не позволяет получить точный показатель. Немного усложнив процесс тестирования, можно существенно повысить точность полученных результатов.

Проверка открытого и закрытого положения

Тестирование на пробой не позволяет определить, есть ли внутренний обрыв. Именно поэтому применяемая схема существенно усложняется. Более точный показатель можно достигнуть следующим образом:

Еще больше повысить точность измерений можно при сборке собственного измерительного прибора.

Самодельный пробник

Простейший вариант исполнения представлен сочетанием только лампочки и батарейки, но он неудобен в применении. Более сложная схема позволяет протестировать устройство при подаче постоянного или переменного тока.

Схема самодельного пробника представлена сочетанием следующих элементов:

Самодельная конструкция может иметь компактные размеры. При необходимости все элементы можно собрать в защитном корпусе, за счет чего прибор можно будет использовать постоянно и транспортировать к месту проверки.

Особенности процедуры

Следует учитывать, что самодельная конструкция позволяет точно определить работоспособность устройства. Пошаговая инструкция выглядит следующим образом:

Если проверяемое устройство проявляло себя так, как в описании, то тиристор находится в хорошем техническом состоянии и работает правильно. Если лампочка горит постоянно, то это говорит о пробое. Если при нажатии на клавишу она не загорается, то это указывает на внутренний обрыв. Именно поэтому можно обойтись без мультиметра.

Тестирование детали на плате

При необходимости можно проверить тиристор мультиметром без демонтажа детали. Однако при применении самодельной конструкции придется выпаять элемент, так как в качестве индикатора используется лампочка. К особенностям этого процесса относятся следующие моменты:

  1. Требуется паяльник. Подобный инструмент требуется при проведении различной работы с электроникой. Мощность и диаметр жилы выбираются в соответствии с тем, какие размеры имеет плата.
  2. При проведении работы следует учитывать, что нельзя оказывать слишком высокую температуру на плату. Это может привести к повреждению дорожек и других элементов.
  3. Нельзя повредить выходы, так как это может осложнить проводимые тесты.

Необходимость в выпаивании детали определяет то, что многие решают использовать мультиметр для проверки. В большинстве случаев полученных результатов вполне достаточно для оценки состояния тиристора.

Прозвонка динистора

При необходимости можно провести проверку динистора. К ключевым моментам относятся следующие моменты:

Применяемый измерительный прибор в соответствующем режиме через специальные щупы соединяется с анодом и катодом. Тестер должен лежать в пределе милливольта, после чего динистор открывается.

Определение исправности устройства

Исправность рассматриваемого устройства можно проверить при применении обычного источника света и измерительного прибора. К особенностям этой техники относятся следующие моменты:

На момент подключения источника питания тринистор открывается, ток подводится к лампочке, и она загорается. После снятия управляющего воздействия лампа должна продолжать гореть, так как проходит ток удержания.

Выбор мультиметра

Для тестирования различного электрического оборудования требуется специальный измерительный прибор, который называют мультиметром. Основные критерии выбора:

  1. При выборе практически всегда уделяется внимание степени функциональности устройства.
  2. Практически все устройства можно разделить на две основные категории: стрелочные и цифровые. Сегодня стрелочные практически не применяются, так как они отображают небольшое количество информации, точность данных может быть невысокой.
  3. Показатель погрешности может варьировать в довольно большом диапазоне. Качественные модели имеют погрешность не более 3%. Лучше выбирать мультиметр с наименьшим значением погрешности, однако они обходятся дорого.
  4. Степень комфорта при использовании конструкции. Измерительное устройство может иметь самые различные размеры и форму. Если оно будет некомфортным в применении, то могут возникнуть серьезные проблемы.
  5. Уделяется внимание и степени защиты от пыли, влаги, ударных нагрузок. При изготовлении измерительного устройства могут использоваться самые различные материалы, некоторые из них характеризуются высокой защитой от воздействия влаги и пыли.
  6. Класс электробезопасности. По этому показателю устройства классифицируются согласно установленным стандартам.
  7. Популярность бренда. Хорошие производители цифровых тестеров неоднократно проверяют надежность и качество выпускаемой продукции.

Рассматривая то, как проверить тиристор ку202н мультиметром, следует учитывать, что все подобные измерительные приборы разделяются на несколько классов:

  1. CAT 1 - устройства, подходящие для работы с низковольтными сетями.
  2. CAT 11 - класс устройства, подходящего к сети питания.
  3. CAT 111 - класс, предназначенный для работы внутри сооружений.
  4. CAT 1 V - для работы с цепью, которая расположена вне здания. Устройства этого класса имеют высокую защиту от воздействия окружающей среды.

После выбора измерительного инструмента можно приступить к тестам. Полученная информация может записываться в блокнот или сохраняться в память устройства, если у него есть соответствующая функция.

Прежде потрудитесь узнать, как работает тиристор. Заимейте представление о разновидностях: триак, динистор. Требуется правильно оценить результат теста. Ниже расскажем, как проверить тиристор мультиметром, даже приведем небольшую схему, помогающую выполнить задуманное в массовом порядке.

Разновидности тиристоров

Тиристор отличается от биполярного транзистора наличием большего количества p-n переходов:

  1. Типичный тиристор p-n переходов содержит три. Структуры с дырочной, электронной проводимостью чередуются на манер зебры. Можно встретить понятие n-p-n-p тиристор. Присутствует или отсутствует управляющий электрод. В последнем случае получаем динистор. Работает по приложенному меж катодом и анодом напряжением: при некотором пороговом значении открывается, начинается спад, ход электронам отсекается. Что касается тиристоров с электродами, управление производится в любом из двух срединных p-n переходов – стороны коллектора, либо эмиттера. Коренное отличие изделий от транзистора в неизменности режим после пропадания управляющего импульса. Тиристор остается открытым, пока ток не упадет ниже фиксированного уровня. Обычно называют током удержания. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
  2. Симисторы отличаются количеством p-n переходов, становится больше минимум на один. Способны пропускать ток в обоих направлениях.

Начало тестирования тиристора мультиметром

Сначала потрудитесь расположение электродов определить:

  • катод;
  • анод;
  • управляющий электрод (база).

Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом. Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.

Процесс тестирования сводится к пониманию, каким напряжением управляется тиристор. Минусовым или плюсовым. Попробуйте так и сяк (если отсутствует маркировка). Одна попытка точно сработает, если тиристор исправен.

Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.

  1. Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.

Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:


Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.

Проверка тиристоров на разъеме мультиметра для транзисторов

Многих интересует, возможно ли прозвонить тиристор мультиметром, используя штатное гнездо проверки транзисторов передней панели, обозначенное pnp/npn. Ответ положительный. Нужно просто подать правильно напряжения. Коэффициент усиления, выданный на дисплей, наверняка будет неверным. Поэтому руководствоваться цифрами избегайте. Давайте посмотрим, как примерно делается. Если открывается тиристор положительным потенциалом, подключать нужно на пин B (base) полугнезда npn. Анод втыкается на пин C (коллектор), катод – E (emitter). Едва ли удастся проверить мощный тиристор мультиметром, для микроэлектроники методика сгодится.

Где взять питание тестировщику

Положение электродов мультиметра

Адаптер телефона дает ток 100 — 500 мА. Часто бывает мало (если понадобится проверить тиристор КУ202Н мультиметром, отпирающий ток 100 мА). Где взять больше? Посмотрим шину USB: третья версия выдаст 5 А. Чрезвычайно большой ток для микроэлектроники, бросьте сомневаться в мощностных характеристиках интерфейса. Распиновку посмотрим в сети. Приводим рисунок, указывающий раскладку типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип А характерен компьютерам. Максимально распространенный. Найдете на адаптерах (зарядных устройствах) портативных плееров, iPad. Можно использовать в качестве источников питания схемы тестирования тиристора.
  2. Второй тип В характерен больше как концевой. Подключаются периферийные устройства наподобие принтеров, прочей оргтехники. Найти в качестве исходного источника питания сложно, игнорируя факт недоступности, авторы проверили раскладку.

Если кабель USB разрезать – уверены, многие ринутся курочить старую технику, обрывать хвосты мышкам – внутри провод питания +5 вольт традиционно красный, оранжевый. Информация поможет правильно прозвонить схему, добыть нужное напряжение. Присутствует на выключенном системном блоке (к розетке подсоединено). Вот почему огонек мышки продолжает гореть. На время теста компьютер достаточно будет ввести в режим гибернации. Кстати, напрямую не имеется в Windows 10 (полазить по настройкам, найдете в управлении энергопотреблением).

Раскладка портов USB

Заручившись помощью схемы, проверим тиристор, не выпаивая. Рабочая точка задана относительно земли порта, поэтому внешние устройства будут играть малую роль. Традиционно заземление персонального компьютера завязано на корпус, куда выходит провод входного фильтра гармоник. Схемные +5 вольт, земля развязаны с шиной. Достаточно тестируемую схему отключить от питания. Для проверки тиристора понадобится напаять усики на каждый вывод. Чтобы подвести питание, управляющий сигнал.

Многие, елозят на стуле, не понимая одной вещи: тут рассказываем, как прозвонить тиристор мультиметром, причем здесь светодиод плюс все навороты? Место светодиода можно – даже лучше – включить щупы тестера, регистрировать ток. Удается использовать малое напряжение питания, всегда безопаснее одновременно. Что касается персонального компьютера, дает широкие возможности тестирования любых элементов, включая тиристоры. Блок питания системника дает набор напряжений:

  1. +5 В идет кулерам, многим другим системам. Фактически стандартное напряжение питания. Провода вольтажа красного цвета.
  2. Напряжение +12 вольт используется для питания многих потребителей. Провод желтого цвета (не путать с оранжевым).
  3. — 12 вольт оставлено обеспечить совместимость с RS. Старый добрый COM-порт, через который сегодня программируются адаптеры промышленных систем. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно несет напряжение +3,3 В.

Видите, разброс великий, главное – ток. Мощность блоков питания компьютеров колеблется в области 1 кВт. Откроет любой тиристор! Пора пришла заканчивать. Надеемся, теперь читатели знают, как проводится прозвонка тиристора мультиметром. Иногда придется повозиться. Упомянутый выше тиристор КУ202Н снабжен структурой pnpn, незапираемый. После пропадания управляющего напряжения ключ не закрывается. Нужно убрать питание, чтобы погас светодиод. Отпирающее напряжение положительное. Подходит схеме. Единственно, ток удержания составляет 300 мА. Случай, когда не любой телефонный зарядник годится провести опыт.

Похожие публикации